首页 > 大学专科> 公共基础
题目内容 (请给出正确答案)
[主观题]

设函数f(x)=x+ax2+bx3在区间[-2,2]上满足罗尔定理的全部条件,且x=1是其满足罗尔中值定理的中值,则a=______,

设函数f(x)=x+ax2+bx3在区间[-2,2]上满足罗尔定理的全部条件,且x=1是其满足罗尔中值定理的中值,则a=______,b=______。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设函数f(x)=x+ax2+bx3在区间[-2,2]上满足罗…”相关的问题
第1题
设函数f(x)与g(x)都在区间I内连续,证明函数ψ(x)=max(f(x),g(x)},ψ(x)=min{f(x),g(x))也在区间I内连续.

设函数f(x)与g(x)都在区间I内连续,证明函数ψ(x)=max(f(x),g(x)},ψ(x)=min{f(x),g(x))也在区间I内连续.

点击查看答案
第2题
设函数f(x)在区间[ 0,1]上连续,且求
设函数f(x)在区间[ 0,1]上连续,且求

设函数f(x)在区间[ 0,1]上连续,且设函数f(x)在区间[ 0,1]上连续,且求请帮忙给出正设函数f(x)在区间[ 0,1]上连续,且求设函数f(x)在区间[ 0,1]上连续,且求请帮忙给出正

点击查看答案
第3题
设函数f(x)在闭区间[0,1]上连续,证明: ∫01dy∫0yf(x)dx=∫01(1-x)f(x)dx

设函数f(x)在闭区间[0,1]上连续,证明:

01dy∫0yf(x)dx=∫01(1-x)f(x)dx

点击查看答案
第4题
设函数y=f(x)在(a,b)内的二阶导数f"(x)<0,则区间(a,b)是曲线y=f(x)的______区间.

设函数y=f(x)在(a,b)内的二阶导数f"(x)<0,则区间(a,b)是曲线y=f(x)的______区间.

点击查看答案
第5题
设函数f(x)在区间[0,+∞)上连续、若f(0)=0且f"(x)<0
设函数f(x)在区间[0,+∞)上连续、若f(0)=0且f"(x)<0

设函数f(x)在区间[0,+∞)上连续、若f(0)=0且f"(x)<0设函数f(x)在区间[0,+∞

点击查看答案
第6题
设函数f(x)在区间(a,b)内连续,且x1,x2,…,xn∈(a,b)则存在点ξ∈(a,b),使

设函数f(x)在区间(a,b)内连续,且x1,x2,…,xn∈(a,b)则存在点ξ∈(a,b),使设函数f(x)在区间(a,b)内连续,且x1,x2,…,xn∈(a,b)则存在点ξ∈(a,b),使设

点击查看答案
第7题
设函数f(x)在闭区间[a,b]上具有二阶导数,且f'(a)=f'(b)=0证明:在区间(a,b)内至少存在一点ξ,使

设函数f(x)在闭区间[a,b]上具有二阶导数,且f'(a)=f'(b)=0证明:在区间(a,b)内至少存在一点ξ,使设函数f(x)在闭区间[a,b]上具有二阶导数,且f'(a)=f'(b)=0证明:在

点击查看答案
第8题
设函数f(x)在区间[0,+∞)上连续非负,并且单调增加.证明:函数 在(0,+∞)上单调增加.

设函数f(x)在区间[0,+∞)上连续非负,并且单调增加.证明:函数

设函数f(x)在区间[0,+∞)上连续非负,并且单调增加.证明:函数    在(0,+∞)上单调增加

在(0,+∞)上单调增加.

点击查看答案
第9题
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f'(x)>0,若极限存在,证明: ①在(a,b)内f(x)>0;

设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f'(x)>0,若极限存设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f'(x)>0,若极限存

设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f'(x)>0,若极限存

点击查看答案
第10题
设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明:.

设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.

证明:设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明.

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改