首页 > 大学本科
题目内容 (请给出正确答案)
[主观题]

试证明定理:设<G,*>是一个群,对于∀a,b∈G,有a*x=b,y*a=b都有解且有唯一解。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“试证明定理:设<G,*>是一个群,对于∀a,b∈G,有a*x…”相关的问题
第1题
对于正整数k.N,={0,1,2,...,k-1}.设*k是Nk上的一个二元运算,使得a*kb=用k除a*b所得的余数,这里a,b∈Nk。 a)当k=4时,试造出关h的运算表。 b)对于任意正整数k,证明:< Nk,*k >是一个半群。

点击查看答案
第2题
设K和H都是群G的子群,试证明:若H•K是G的子群,则K•H=H•K。

点击查看答案
第3题
设(G,*)是群,e是幺元,如果对于G中任意元素n,都有a*a=e,证明(G,*)是阿贝尔群。

设(G,*)是群,e是幺元,如果对于G中任意元素n,都有a*a=e,证明(G,*)是阿贝尔群。

点击查看答案
第4题
设K是群G的一个有限正规子群,P是K的一个SylowP一子群.证明:G=N(P)K.

设K是群G的一个有限正规子群,P是K的一个SylowP一子群.证明:G=N(P)K.

点击查看答案
第5题
设f和g都是群(G1,★)到群(G2,*)的同态映射,证明:(C,★)是(G1,★)的一个子群,其中,C={x|x∈G1,且f(x)=g(x)}.

设f和g都是群(G1,★)到群(G2,*)的同态映射,证明:(C,★)是(G1,★)的一个子群,其中,C={x|x∈G1,且f(x)=g(x)}.

点击查看答案
第6题
设G是一个阶数大于2的群,且G的每个元素都满足方程x2=e.证明:G必含有4阶子群.

点击查看答案
第7题
设G是群,K≤H≤G.又A={a1,a2,…)与B={b1,b2,…}分别为G关于H和H,关于K的左陪集代表系.证明: AB={aib
j|ai∈A,bj∈B} 是G关于K的一个左陪集代表系.

点击查看答案
第8题
设G=R×R,R为实数集,G上的一个二元运算+定义为 〈x1,y1〉+〈x2,y2〉=〈x1+x2,y1+y2〉. 又设H={(x,y)|y=2x},证明:

设G=R×R,R为实数集,G上的一个二元运算+定义为

〈x1,y1〉+〈x2,y2〉=〈x1+x2,y1+y2〉.

又设H={(x,y)|y=2x},证明:(G,+)为阿贝尔群,(H,+)为子群,并求(x0,y0)H,(x0,y0)∈G.

点击查看答案
第9题
试证明: 设Γ是R1上的一个连续函数族.若对每一个x∈R1,均存在Mx>0,使得 |f(x)|≤Mx(f∈Γ). 则存在M>0,以及开

试证明:

设Γ是R1上的一个连续函数族.若对每一个x∈R1,均存在Mx>0,使得

|f(x)|≤Mx(f∈Γ).

则存在M>0,以及开集试证明:  设Γ是R1上的一个连续函数族.若对每一个x∈R1,均存在Mx>0,使得  |f(x)|≤,使得

|f(x)|≤M (f∈Γ,x∈G).

点击查看答案
第10题
证明定理15.8.定理15.8:设u,v为n阶无向图简单图G中两个不相邻的顶点,且d(u)+d(v)≥n,则G为哈密

证明定理15.8.

定理15.8:设u,v为n阶无向图简单图G中两个不相邻的顶点,且d(u)+d(v)≥n,则G为哈密顿图证明定理15.8.定理15.8:设u,v为n阶无向图简单图G中两个不相邻的顶点,且d(u)+d(v)GU(u,v)为哈密顿图((u,v)是加的新边.

点击查看答案
第11题
设(G,*)是14阶可交换群,证明:

设(G,*)是14阶可交换群,证明:

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改